The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2 X^2  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  1
 0 X^3  0  0  0  0  0  0  0 X^3 X^3 X^3 X^3 X^3 X^3 X^3  0  0  0  0  0  0  0  0 X^3 X^3 X^3 X^3 X^3 X^3 X^3 X^3  0  0  0  0 X^3 X^3 X^3 X^3  0  0 X^3 X^3  0 X^3 X^3  0  0  0  0  0  0  0  0 X^3 X^3 X^3 X^3 X^3 X^3 X^3 X^3  0  0  0  0 X^3 X^3 X^3 X^3  0  0 X^3 X^3  0 X^3 X^3  0  0  0  0  0 X^3 X^3 X^3  0  0 X^3 X^3 X^3  0 X^3  0  0
 0  0 X^3  0  0  0 X^3 X^3 X^3 X^3 X^3  0 X^3 X^3  0  0  0  0  0  0 X^3 X^3 X^3 X^3 X^3 X^3 X^3 X^3  0  0  0  0  0  0 X^3 X^3 X^3 X^3  0  0  0 X^3 X^3  0 X^3 X^3  0  0  0  0  0 X^3 X^3 X^3 X^3 X^3 X^3 X^3 X^3  0  0  0  0  0  0 X^3 X^3 X^3 X^3  0  0  0 X^3 X^3  0 X^3 X^3  0  0  0  0 X^3 X^3 X^3 X^3  0  0 X^3 X^3  0  0 X^3 X^3  0  0
 0  0  0 X^3  0 X^3 X^3 X^3  0  0  0  0 X^3 X^3 X^3 X^3  0  0 X^3 X^3 X^3 X^3  0  0  0  0 X^3 X^3 X^3 X^3  0  0  0 X^3 X^3  0  0 X^3 X^3  0 X^3 X^3  0  0  0 X^3 X^3  0  0 X^3 X^3 X^3 X^3  0  0  0  0 X^3 X^3 X^3 X^3  0  0  0 X^3 X^3  0  0 X^3 X^3  0 X^3 X^3  0  0  0 X^3 X^3  0  0 X^3 X^3  0  0 X^3 X^3 X^3 X^3  0  0  0  0 X^3  0  0
 0  0  0  0 X^3 X^3  0 X^3 X^3  0 X^3 X^3 X^3  0  0 X^3  0 X^3 X^3  0  0 X^3 X^3  0  0 X^3 X^3  0  0 X^3 X^3  0 X^3 X^3  0  0  0  0 X^3 X^3  0 X^3 X^3  0 X^3 X^3  0  0 X^3 X^3  0  0 X^3 X^3  0  0 X^3 X^3  0  0 X^3 X^3  0 X^3 X^3  0  0  0  0 X^3 X^3  0 X^3 X^3  0 X^3 X^3  0 X^3  0 X^3  0  0  0  0 X^3  0 X^3 X^3 X^3  0 X^3 X^3  0  0

generates a code of length 95 over Z2[X]/(X^4) who�s minimum homogenous weight is 94.

Homogenous weight enumerator: w(x)=1x^0+68x^94+142x^95+15x^96+16x^97+8x^98+4x^110+2x^111

The gray image is a linear code over GF(2) with n=760, k=8 and d=376.
This code was found by Heurico 1.16 in 0.641 seconds.